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Symplectic Geometry and Infinite-Dimensional Symmetry Groups

H. Aratyn3, E. Nissimov 2 and S. Pacheva4

1. Introduction
In this talk we present the basics of the symplectic approach to describe physical models

possessing infinite-dimensional symmetries. This approach points the systematic way from
the group theoretical objects, through geometric actions, to Poisson bracket structures on
infinite-dimensional groups and quantization. Our aim is to uncover the universal features
of various important physical theories and obtain new insights by putting them in the
framework of coadjoint orbits.

In our formalism each physical model is fully characterized by few fundamental ingredi-
ents: pairing 〈·|·〉 between Lie algebra G and its dual G∗, (non-)trivial Lie algebra two-cocycle
ω(·, ·) and the adjoint action of the corresponding group G. These ingredients expose fully
the symmetry structure of the model and enter into the general recipe for the geometric
action. Classical r-matrices and Yang-Baxter equations appear naturally in this geometric
setting.

1.1 SO(3) Example: Coadjoint Orbit and Geometric Action
We start illustrating the general formalism with the simple and well-known example of

G = SO(3). The interesting geometric structures: Lie-Berezin bracket, Kirillov- Kostant
(KK) symplectic form [1], geometric action on the coadjoint orbit and the Poisson brackets
induced on the space of functions on G, on which we will comment in greater detail later,
will show up already here.

Let G be the Lie algebra of SO(3) with basis elements e1, e2, e3 and the commutation
relations [ei , ej ] = εijkek. A dual basis {ei} in G∗ is defined according to 〈ei|ej〉 = δij .

A Poisson structure on the space C∞ (G∗, IR) of smooth, real valued functions on G∗ is
given by the Lie-Berezin bracket:

{f(U) , g(U)}LB ≡ −εijkui ∂jf(U) ∂kg(U) ∀U = uke
k ∈ G∗ (1)

It is easy to verify that (1) vanishes on function f0(U) = uiui invariant under SO(3)
rotations (coadjoint action). To remove such degeneracy one restricts the space by imposing
f0(U) = u2

0 = constant. This restriction defines the orbit of the coadjoint representation of
G = SO(3) to be a sphere S2 with a non-zero radius u0 6= 0. The inverse of the bracket (1)
restricted to the orbit defines the KK symplectic two-form Ω̂U . The canonical expression
for this KK two-form in components is:

Ω̂U =
1

2
ωijduiduj ; ωij = εijkuk/u

2
0 (2)
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The infinitesimal variation of the co-orbit point U along the orbit (i.e. uidui = 0) can be
described in terms of the G valued one-form Y = yiei through duk = εijky

iuj . Y must
satisfy, for consistency, the Maurer-Cartan (MC) equation dyi = 1

2εijky
jyk. Using the MC

one-form Y we can rewrite (2) in an alternative way as:

Ω̂U =
1

2
〈U |[Y, Y ]〉/u2

0 =
1

2
yidui/u

2
0 (3)

In this form the closure of Ω̂U becomes transparent due to the Jacobi relation for so(3). In
fact Ω̂U is exact and is reproduced by the Liouville one-form αu through

Ω̂U = dαu with αu ≡ −ukyk (4)

Let us now parametrize the orbit S2 by spherical coordinates:

u1 = u0 sin θ cosφ , u2 = u0 sin θ sinφ ; u3 = u0 cos θ (5)

Using spherical coordinates one can easily rewrite (2) in terms of Darboux variables φ and
cos θ as

Ω̂U = u0 dφ d cos θ (6)

and find the MC one-form to be

y1 (θ, φ) = − sinφdθ ; y2 (θ, φ) = cosφdθ ; y3 (θ, φ) = dφ (7)

where yi is defined up to an expression βui with β being an arbitrary closed one-form (this
gauge ambiguity in defining MC one-form Y = yiei will not affect Ω̂U given by (4)). Clearly
(7) satisfies the MC equation.

Under infinitesimal SO(3) transformation:

U → U ′ = U + [ε, U ] and Y → Y ′ = Y + [ε, Y ] + dε for ε = εiei (8)

Correspondingly, the Liouville one-form αu = −〈U |Y 〉 is not invariant under SO(3) trans-
formation but transforms as αu → αu − 〈U |dε〉. If we now define the geometric action for
SO(3) as

W ≡
∫
αu = −

∫
〈U | Y 〉 = −u0

∫
cos θ dφ (9)

we find that (8) results in the transformation rule δW = −
∫
〈U |dε〉 . Hence the Noether pro-

cedure for the geometric action (9) identifies the co-orbit point U as a conserved momentum
(see eq.(41) below for generalization of this important feature).

1.2 SO(3) Example: Poisson Brackets on the Group and Classical r-matrix
The orbit of G = SO(3) is naturally embedded in the larger phase space given by the

cotangent bundle T ∗G equipped with the canonical symplectic two-form :

Ω (U, g) = −d 〈U | dgg−1 〉 (10)

where the canonical momentum U = uke
k belongs to the cotangent space T ∗gG at the point

g ∈ G and T ∗gG can be identified with the dual space G∗ of the Lie algebra G of G. Note,
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that despite of the similarity between (4) and (10), these objects are defined on different
spaces.

The non-zero Poisson brackets (PB’s) among the canonical momenta and coordinates
(U, g) corresponding to the symplectic two-form (10) are:

{ui , uj}PB = −εijkuk (11)

{ui , Φ(g)}PB = LiΦ(g) ≡ d

dt
Φ(eteig)

∣∣∣∣
t=0

for Φ ∈ C∞ (G, IR)

Consider now a reduction of T ∗G to the orbit passing through the point U0 by imposing:

Ψξ (U, g) ≡
〈
g−1Ug − U0 | ξ

〉
= 0 (12)

The constraints (12) satisfy the PB algebra:

{Ψξ(U, g) , Ψη(U, g) }PB = Ψ[ξ , η] (U, g) + 〈U0 | [ξ , η] 〉 (13)

The orbit passing through U0 is isomorphic to G/Gstat where Gstat is the stationary sub-
group of the point U0 corresponding to the Lie subalgebra

Gstat ≡ {ξ0 = ξi0ei ∈ G ; εijk ξ
i
0 u0 je

k = 0} (14)

The second class part of constraints (12) is given by Ψ⊥ ≡ Ψξ⊥(U, g) with ξ⊥ ∈ G \ Gstat.
We find the Dirac brackets (DB’s) between smooth functions Φ1,2(g) on the reduced phase
space G/Gstat to be:

{Φ1(g),Φ2(g)}DB = −
{

Φ1(g),Ψi
⊥(U, g)

}
PB

(〈U0 | [ei , ej ]〉)−1
{

Ψj
⊥(U, g),Φ2(g)

}
PB

= −rijRiΦ1(g)RjΦ2(g) (15)

where

RiΦ(g) =
d

dt
Φ
(
getei

) ∣∣∣∣
t=0

(16)

denotes the right Lie derivative along ei. The r-matrix entering (15) has indices i, j running
outside Gstat where it is defined by:

r−1
ij = −εijku0 k ; rij = εijku0 k/u

2
0 (17)

Let us introduce the matrix r ≡ rij ei ⊗ ej ∈ G ⊗ G for which we find an explicit formula

r =
1

u2
0

ei ⊗ (~e× ~u0)i → r =
1

u0
(e1 ⊗ e2 − e2 ⊗ e1) for u0 i = δi3u0 (18)

With the usual notation r(12) ≡ rijei ⊗ ej ⊗ 1l we can rewrite the Jacobi identity of the
Dirac bracket (15) in the form of the well-known classical Yang-Baxter equation

[r(12), r(13)] + [r(12), r(23)] + [r(13), r(23)] = 0 with r(12) = −r(21) (19)

See ref.[13] for generalization of the classical r-matrix construction (15) to infinite-dimensional
groups. In section 4 below we discuss application to Virasoro group.
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2. General Formalism

2.1 Basic Ingredients
Let us now consider arbitrary (infinite-dimensional) group G with a Lie algebra G and

its dual space G∗ . The adjoint and coadjoint actions of G and G on G and G∗ are given
by Ad(g)(ξ) = gξg−1 , ad(ξ)η = [ξ, η] and 〈Ad∗(g)U |ξ〉 =

〈
U |Ad(g−1)ξ

〉
, 〈ad∗(ξ)U |η〉 =

−〈U |ad(ξ)η〉 . Here g ∈ G and ξ, η ∈ G , U ∈ G∗ are arbitrary elements, whereas 〈·|·〉
indicates the natural bilinear form “pairing” G and G∗ .

Our primary interest is in infinite-dimensional Lie algebras with a central extension
G̃ = G ⊕ IR of G and, correspondingly, an extension G̃∗ = G∗⊕ IR of the dual space G∗. The
central extension is given by a linear operator ŝ : G −→ G∗ satisfying

ŝ([ξ, η]) = ad∗(ξ)ŝ(η)− ad∗(η)ŝ(ξ) (20)

which defines a nontrivial two-cocycle on the Lie algebra G :

ω(ξ, η) ≡ −λ 〈ŝ(ξ) | η〉 ∀ ξ, η ∈ G (21)

where λ is a numerical normalization constant. The Jacobi identity (20) can be integrated
(η −→ g = exp η) to get a unique nontrivial G∗-valued group one-cocycle S(g) in terms of
the Lie-algebra cocycle operator ŝ (provided H1(G) = ∅ , dimH2(G) = 1 ; see [2] ) :

ad∗(ξ)S(g) = Ad∗(g) ŝ
(
Ad(g−1)ξ

)
− ŝ(ξ) ∀ ξ ∈ G (22)

satisfying the relations :

ŝ(ξ) =
d

dt
S(etξ)

∣∣∣∣∣
t=0

, S(g1g2) = S(g1) +Ad∗(g1)S(g2) (23)

Now, we can easily generalize the adjoint and coadjoint actions of G and G to the case with
a central extension (acting on elements (ξ, n), (η,m) ∈ G̃ and (U, c) ∈ G̃∗; see e.g. [3])5 :

Ãd(g) (ξ, n) =
(
Ad(g)ξ , n+ λ

〈
S(g−1) | ξ

〉)
(24)

ãd(ξ, n) (η,m) ≡ [(ξ, n) , (η,m)] =
(
ad(ξ) η , −λ 〈ŝ(ξ)|η〉

)
(25)

Ãd
∗
(g) (U, c) = (Ad∗(g)U + cλS(g) , c) , ãd∗(ξ, n)(U, c) = (ad∗(ξ)U + c λ ŝ(ξ) , 0 )

(26)
Also, the bilinear form 〈·|·〉 on G∗ ⊗ G can be extended to a bilinear form on G̃∗ ⊗ G̃ as :

〈(U, c) | (ξ, n)〉 = 〈U | ξ〉+ c n (27)

Another basic geometric object is the fundamental G-valued Maurer-Cartan one-form Y (g)
on G satisfying d Y (g) = 1

2 [Y (g) , Y (g) ] . It is related to the group one-cocycle S(g)
through the equation :

dS(g) = ad∗(Y (g))S(g) + ŝ(Y (g)) (28)

5The physical interpretation of the G-cocycle ŝ is that of “anomaly” of the Lie algebra (i.e., existence of
a c-number term in the commutator (25) ), whereas the group cocycle S(g) is the integrated “anomaly”, i.e.
the “anomaly” for finite group transformations (see eqs.(24) and (23) ).
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and possesses group one-cocycle property similar to that of S(g) (23) :

Y (g1g2) = Y (g1) +Ad(g1)Y (g2) (29)

The group- and algebra-cocycles S(g) and ŝ(ξ) can be generalized to include trivial (co-
boundary) parts ( (U0, c) being an arbitrary point in the extended dual space G̃∗ ) :

Σ(g) ≡ Σ
(
g; (U0, c)

)
= cλS(g) +Ad∗(g)U0 − U0 (30)

σ̂(ξ) ≡ σ̂(ξ; (U0, c)) = ad∗(ξ)U0 + cλ ŝ(ξ) =
d

dt
Σ(etξ)

∣∣∣∣∣
t=0

(31)

The generalized cocycles (30) and (31) satisfy the same relations as (23), (28) and (22).

2.2 Coadjoint Orbits
The coadjoint orbit of G, passing through the point (U0, c) of the dual space G̃∗, is

defined as (cf. (26) ) :

O(U0,c) ≡
{(
U(g), c

)
∈ G̃∗ ; U(g) = U0 + Σ(g) = Ad∗(g)U0 + cλS(g)

}
(32)

The orbit (32) is a right coset O(U0,c) ' G/Gstat where Gstat is the stationary subgroup of
the point (U0, c) w.r.t. the coadjoint action (26) :

Gstat =

{
k ∈ G ; Σ(k) ≡ cλS(k) +Ad∗(k)U0 − U0 = 0

}
(33)

The Lie algebra corresponding to Gstat is :

Gstat ≡
{
ξ0 ∈ G ; σ̂(ξ0) ≡ ad∗(ξ0)U0 + cλ ŝ(ξ0) = 0

}
(34)

Now, using the basic geometric objects from sect. 2.1, we can express the KK symplectic
form ΩKK [1] on O(U0,c) for any infinite-dimensional (centrally extended) group G in a
simple compact form [3] . Namely, introducing the centrally extended objects :

Σ̃(g) ≡ (Σ(g), c) ∈ G̃∗ , Ỹ (g) ≡
(
Y (g),mY (g)

)
∈ G̃ (35)

dΣ̃(g) = ãd∗
(
Ỹ (g)

)
Σ̃(g) , dỸ (g) =

1

2

[
Ỹ (g) , Ỹ (g)

]
(36)

we obtain (using (27) and (28)) :

ΩKK = −d
(〈

Σ̃(g) | Ỹ (g)
〉)

= −1

2

〈
dΣ̃(g) | Ỹ (g)

〉
(37)

2.3 Geometric Actions, Symmetries and Ward Identities
The geometric action on a coadjoint orbit O(U0,c) of arbitrary infinite-dimensional (cen-

trally extended) group G can now be written down compactly as [3, 4] :

W [g] =

∫
d−1ΩKK = −

∫ 〈
Σ̃(g) | Ỹ (g)

〉
(38)
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or, in more detail, introducing the explicit expressions (35), (36), (30) and (31) :

W [g] =

∫ 〈
U0 | Y (g−1)

〉
− cλ

∫ [〈
S(g) | Y (g)

〉
− 1

2
d−1

(〈
ŝ(Y (g)) | Y (g)

〉)]
(39)

The integral in (38), (39) is over one-dimensional curve on the phase space O(U0,c) with a
“time-evolution” parameter τ . Along the curve the exterior derivative becomes d = dτ∂τ
and the projection of the one-form Y (g) is : Y (g) = dτyτ (g).

The fundamental Poisson brackets
{〈

Σ̃(g) | ξ̃
〉
,
〈

Σ̃(g) | η̃
〉}

PB
= −

〈
Σ̃(g) | [ξ̃ , η̃]

〉
aris-

ing from (39) identify Σ̃(g) as an equivariant moment map.
The group cocycle properties of S(g) and Y (g) ( eqs.(23) and (29) ) imply the following

fundamental group composition law [4] (with Σ(g) as in (30)) :

W [g1g2] = W [g1] +W [g2] +

∫ 〈
Σ(g2) | Y (g−1

1 )
〉

(40)

Eq.(40) is a generalization of the famous Polyakov-Wiegmann composition law [5] in WZNW
models to geometric actions on coadjoint orbits of arbitrary groups with central extensions.

Eq.(40) contains the whole information about the symmetries of the geometric action
(39). First, under arbitrary left group translations g −→ exp tξ g we obtain, using (40), the
Noether theorem :

d

dt
W [exp tξ g]

∣∣∣∣∣
t=0

≡ LξW [g] = −
∫
〈Σ(g) | dξ〉 (41)

i.e., Σ(g) (30) is a Noether conserved current : ∂τΣ(g) = 0 .
Next, under arbitrary right group translations g −→ g exp tη we get from (40) :

d

dt
W [g exp tξ]

∣∣∣∣∣
t=0

≡ RηW [g] =

∫ 〈
σ̂(η) | Y (g−1)

〉
= −

∫ 〈
σ̂(Y (g−1)) | η

〉
(42)

Recalling (34) we find “gauge” invariance of W [g] under right group translations from the
stationary subgroup Gstat (33) of the orbit O(U0,c) (32) : Rξ0W [g] = 0 for ∀ξ0 ∈ Gstat
(34). This reveals the geometric meaning of “hidden” local symmetries [6] in models with
arbitrary infinite-dimensional Noether symmetry groups.

The Legendre transform of W [g] :

Γ[g] ≡W [g]−
∫ 〈

Σ(g) | δW [g]

δΣ(g)

〉
= W [g] +

∫
〈Σ(g) | Y (g)〉 = −W [g−1] (43)

considered as a functional of Y (g) = dτyτ (g) , satisfies the functional equation :

∂τ
δΓ

δyτ (g)
− ad∗(yτ (g))

δΓ

δyτ (g)
− ŝ(yτ (g)) = 0 (44)

As shown in [4, 7], eq.(44) coincides with the Ward identity for the functional integral :

exp iΓ[y] =

∫
Dh exp i

{
W [h] +

∫
〈Σ(h) | y〉

}
(45)
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and thus (43) provides the exact solution of (45) upon parametrizing y = yτ (g).

3. Applications

3.1 Kac-Moody Groups
The Kac-Moody group elements g ' g(x) are smooth mappings S1 −→ G0 , where G0 is

a finite-dimensional Lie group with generators {TA} . The explicit form of (24)-(26) reads
in this case :

Ad(g)ξ = g(x)ξ(x)g−1(x) , ad(ξ1)ξ2 = [ξ1(x) , ξ2(x)] , ξ1,2(x) = ξA1,2(x)TA

Ad∗(g)U = g(x)U(x)g−1(x) , ad∗(ξ)U = [ξ(x) , U(x)] , U(x) = UA(x)TA

ŝ(ξ) = ∂xξ(x) , S(g) = ∂xg(x) g−1(x) , Y (g) = dg(x) g−1(x) (46)

Plugging (46) into (39) one obtains the well-known WZNW action for G0-valued chiral fields
coupled to an external “potential” U0(x).

3.2 Virasoro Group
The Virasoro group elements g ' F (x) are smooth diffeomorphisms of the circle S1 .

Group multiplication is given by composition of diffeomorphisms in inverse order : g1 · g2 =

F2 ◦ F1 (x) = F2

(
F1(x)

)
. Eqs.(24)-(26) have now the following explicit form :

Ad(F )ξ =
(
∂xF

)−1
ξ (F (x)) , Ad∗(F )U =

(
∂xF

)2
U (F (x))

ad(ξ)η ≡ [ξ, η] = ξ∂xη − (∂xξ)η , ad∗(ξ)U = ξ∂xU + 2(∂xξ)U

ŝ(ξ) = ∂3
xξ , S(F ) =

∂3
xF

∂xF
− 3

2

(
∂2
xF

∂xF

)2

, Y (F ) =
dF

∂xF
(47)

Here S(F ) is the well-known Schwarzian. Plugging (47) into the general expressions (39)
and (40) one reproduces the well-known Polyakov D = 2 gravity action (coupled to an
external stress-tensor U0(x)) :

W [F ] =

∫
dτdx

[
−U0(F (τ, x)) ∂xF ∂τF +

c

48π

∂τF

∂xF

(
∂3
xF

∂xF
− 2

(∂2
xF )2

(∂xF )2

)]
(48)

and its group composition law [6, 8].

3.3 (N,0) D = 2 Super-Virasoro Group (N ≤ 4)
Here we shall use the manifestly (N, 0) supersymmetric formalism. The points of the

(N, 0) superspace are labeled as (t, z), z ≡ (x, θi), i = 1, .., N . The group elements are
given by superconformal diffeomorphisms :

z ≡ (x, θj) −→ Z̃ ≡
(
F (x, θj), Θ̃i(x, θj)

)
(49)

obeying the superconformal constraints 6 :

DjF − iΘ̃kDjΘ̃k = 0 , DjΘ̃lDkΘ̃l− δjk
[
DΘ̃

]2
N

= 0 ,
[
DΘ̃

]2
N
≡ 1

N
DmΘ̃nDmΘ̃n (50)

6The following superspace notations are used : Di = ∂
∂θi

+ iθi∂x , DN ≡ 1
N !
εi1···iND

i1 · · ·DiN .
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The (N, 0) supersymmetric analogues of (47) read:

Ad(Z̃)ξ =
([
DΘ̃

]2
N

)−1

ξ(Z̃(z)) , Ad∗(Z̃)U =
([
DΘ̃

]2
N

)2−N
2
U(Z̃(z)) (51)

ad(ξ)η ≡ [ξ, η] = ξ∂xη−(∂xξ)η−
i

2
DkξD

kη , ad∗(ξ)U = ξ∂xU+(2−N
2

)(∂xξ)U−
i

2
DkξD

kU

(52)

ŝN (ξ) = iN(N−2)DN∂3−N
x ξ , YN (Z̃) =

(
dF + iΘ̃jdΘ̃j

)([
DΘ̃

]2
N

)−1

(53)

The associated G∗-valued group one-cocycles SN (Z̃) coincide with the well-known [9] (N, 0)
super-Schwarzians. Inserting the latter and (53) into (39) one obtains the (N, 0) supersym-
metric generalization of the Polyakov D = 2 gravity action for any N ≤ 4 :

WN [Z̃] =

∫
dτ (dz)

[
∂τ
(
ln
[
DΘ̃

]2
N

)
DN∂1−N

x

([
DΘ̃

]2
N

)
−U0(Z̃)

([
DΘ̃

]2
N

)2−N
2

YN (Z̃)

]
(54)

3.4 Group of Area-Preserving Diffeomorphisms on Torus with Central Extension˜SDiff(T2)
The elements of S̃Diff (T 2) are described by smooth diffeomorphisms T 2 3 ~x ≡

(x1, x2) −→ F i(~x) ∈ T 2 (i = 1, 2), such that det ‖ ∂F i

∂xj
‖= 1 . The Lie algebra of S̃Diff (T 2)

reads :
[
L̂(~x), L̂(~y)

]
= −εij∂iL̂(~x)∂jδ

(2)(~x − ~y) − ai∂iδ(2)(~x − ~y) , where ~a ≡ (a1, a2) are

the “central charges” [10] . The general eqs.(24)-(26) now specialize to [11] :

Ad(~F )ξ = ξ(~F (~x)) , ad(ξ)η ≡ [ξ, η](~x) = εij∂iξ(~x)∂jη(~x)

Ad∗(~F )U = U(~F (~x)) , ad∗(ξ)U = εij∂iξ(~x)∂jU(~x)

ŝ(ξ) = ai∂iξ(~x) , S(~F ) = aiεij
(
F j(~x)− xj

)
, Y (~F ) =

1

2
εijF

idF j + dρ(~F ) (55)

where ∂iρ(~F ) = −1
2

(
εklF

k∂iF
l + εijx

j
)

.

Plugging (55) into (39) we get the S̃Diff (T 2) co-orbit geometric action [11] :

W
S̃Diff (T 2)

[~F ] = −1

3

∫
dτ dx2

(
akεklF

l
)
εijF

i∂τF
j (56)

In [7] it was shown that (56) is the Wess-Zumino anomalous effective action for the toroidal
membrane in the light-cone gauge.

3.5 Gel’fand-Dikii Algebra (GDA) and Wn Symmetry
The SL(n) GDA consists of differential operators L(u) =

∑n
k=0 uk(x)∂kx with un =

1 , un−1 = 0 . Its dual space is the Volterra algebra of pseudo-differential operators ξ̂ =∑
k≥0 ∂

−k−1
x (ξk(x)·) with

〈
L(u) | ξ̂

〉
=
∫
dx res

(
L(u) ξ̂

)
=
∫
dx
∑n
k=0 uk(x) ξk(x) defining

the bilinear form. On GDA there exist natural Poisson bracket structures known as first-
and second- GD brackets [12].
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Let us introduce a Maurer-Cartan-like one-form with values in the Volterra algebra
Ŷ =

∑n
k=0 ∂

−k
x (Yk(x)·) satisfying 7 (cf. first eq.(36)) :

dL(u) =
(
L(u)Ŷ

)
+
L(u)− L(u)

(
Ŷ L(u)

)
+

(57)

The r.h.s. of (57) represents the coadjoint action of Volterra algebra on GDA. Now, we can

write compactly the symplectic two-form Ω
(2)
GD , corresponding to the second GD bracket,

and the associated geometric action, describing models with Wn symmetry, as (cf. (37) and
(38)) :

Wn[u] =

∫
d−1Ω

(2)
GD = −1

2

∫
d−1

(〈
dL(u) | Ŷ (u)

〉)
(58)

where Ŷ (u) is the solution of (57).

4. Poisson Brackets and Classical r-matrix for Virasoro Group
We find the infinite-dimensional analogue of (15) for Virasoro group to be :

{F (x), F (y)}DB = −r(F (x), F (y); {e}) = − 1

2cλ

{
1

µ2
ε(x− y)

[
1− cosµ

(
F (x)− F (y)

)]
+ e1 sinµ

(
F (x)− F (y)

)
+ e2

[
sinµF (x)− sinµF (y)

]
+ e3

[
cosµF (x)− cosµF (y)

]}
(59)

Notations in (59) are as follows. The normalization constant λ is −1/24π . µ2 ≡ 2U0/cλ
where the constant U0 parametrizes a generic Virasoro coadjoint orbit [14]. r(x, y; {e}) is
the operator kernel of the infinite-dimensional Virasoro r-matrix satisfying :

cλ∂x
(
∂2
x + µ2

)
r(x, y; {e}) = δ(x− y) , r(x, y; {e}) = −r(y, x; {e})∑

cyclic (1,2,3)

[
r(x1, x2; {e})∂x2r(x2, x3; {e})− ∂x2r(x1, x2; {e}) r(x2, x3; {e})

]
= 0 (60)

Eq. (60) is the differential classical Yang-Baxter equation for Virasoro group. {e} ≡
(e1, e2, e3) are constants constrained by e2

2 + e2
3 − e2

1 = 1/µ4 . The parametric dependence
of r(x, y; {e}) on {e} results from the “hidden” SL(2; IR) gauge invariance of the Polyakov
action (48). To exhibit it more explicitly let us consider, for simplicity, the case of U0 = 0
co-orbit. Then [13] :

r(x, y;A0) =
1

4cλ

[
(x−y)2ε(x−y)+(1+2b0c0)(x2−y2)−2a0b0(x−y)−2c0d0xy(x−y)

]
(61)

where the coefficients are parametrized in terms of the SL(2; IR) matrix A0 =

(
a0 b0
c0 d0

)
. It

is easy to show that under SL(2; IR) transformation A : F −→ F ◦A ≡ (aF + b)(cF +d)−1

the Virasoro group Poisson brackets (59) are SL(2; IR)-covariant :

{F ◦A (x) , F ◦A (y)}DB = −r
(
F ◦A (x) , F ◦A (y) ; AA0

)
(62)

7For consistency, the coefficient (one-form) Yn(x) is determined by the requirement res[L(u), Ŷ ] = 0.
The subscript + indicates taking the differential part.
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The above construction extends to other infinite-dimensional groups [13]. The r-operator
is an inverse to the Lie-algebra cocycle operator σ̂(·) (31) and satisfies a differential Yang-
Baxter equation as a consequence of the cocycle condition (20) (cf.(60)). The remaining
ambiguity in the r-operator is parametrized by elements of Gstat (33).
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